

Hochpräzise OM60 Laser-Distanzsensoren

Der neue Massstab seiner Klasse.

OM60 – DER NEUE MASSSTAB SEINER KLASSE OM60 – Best-in-Class Präzision

Präzise	 Wiederholgenauigkeit bis zu 0,12 μm Linearitätsabweichung < ± 0,03 % (± 3 μm) Linienstrahlform für präzise Messung auf strukturierten Oberflächen
Zuverlässig	 Best-in-class Temperaturstabilität bis zu ± 1.3 μm / K am Ende des Messbereichs Extrem oberflächenunabhängige Messperformance auch bei schwierigen Bedingungen
Connected	 IO-Link und Modbus RTU – intuitive und einfache Parametrierung mit der Baumer Sensor Suite Zusatzdaten f ür Condition Monitoring bei allen Schnittstellen verf ügbar

OM60 – DER NEUE MASSSTAB SEINER KLASSE OM60 – Übersicht Messbereiche

Produkt*	Messbereiche	Strahlform	Linearitäts- abweichung µm	Wiederhol- genauigkeit in µm	Laserklasse	Messrate	Schnittstellen
OM60-P0030 OM60-L0030	20 30 mm	Punkt Linie	± 4 μm ± 3 μm	0,12 μm	1	2.2 /11-	
OM60-P0060 OM60-L0060	40 60 mm	Punkt Linie	± 8 μm ± 6 μm	0,27 µm	1	5,5 KHZ	
OM60-P0135 OM60-L0135	65 135 mm	Punkt Linie	± 30 μm ± 25 μm	0,7 µm	1		Analog I/U IO-Link Modbus RTU
OM60-P0450 OM60-L0450	160 450 mm	Punkt Linie	± 250 μm ± 180 μm	5 µm	1	2 kHz	
OM60-P1000 OM60-L1000	200 1000 mm	Punkt Linie	± 1250 μm ± 900 μm	20 µm	1		

*P = Laser-Point, L = Laser-Linie Variante

OM60 – DER NEUE MASSSTAB SEINER KLASSE

OM60

OM60 – DER NEUE MASSSTAB SEINER KLASSE

OM60

DE

Mitgeltende Dokumente

- Als Download unter <u>www.baumer.com</u>
- Betriebsanleitung
- Datenblatt
- EU-Konformitätserklärung
 Als Produktbeileger:
- Beileger Allgemeine Hinweise (11042373)

Messfeld

ZP	Nullpunkt	Sdc	Messbereichsanfang
MR	Messbereich	Sde	Messbereichsende

Sensor-LEDs

Bez. Leuchtet Blinkt

POWER Grün Sensor betriebsbereit Kurzschluss

OUT-PUT Gelb Kein gültiges Signal in- Kritische Sinerhalb des Messbegnalqualität reichs

In den Werkseinstellungen folgt der **OUTPUT** (Pin 4) und somit auch die gelbe LED der Funktion des Alarmausgangs. Alternativ können Sie die Funktion des Schaltausgangs für den **OUTPUT** und die gelbe LED wählen.

Montage

 Bei Messobjekten mit glänzenden Oberflächen: Kippen Sie den Sensor um 6° bis 10° zur Seite, sodass das von der Oberfläche direkt reflektierte Licht nicht auf den Empfänger des Sensors trifft.

 Montieren Sie den Sensor mittels zwei M5-Schrauben (1) oder zwei M4-Schrauben (2) mit einem Anzugsmoment von 1.1 Nm ±10 %.

Bedienung am Sensor

Display

- Aktivierung des Displays durch kurzes Drücken eines beliebigen Buttons
- Nach 2 Minuten wird die Anzeige im Display zurückgesetzt: Display zeigt Startbildschirm an.
- Nach 5 Minuten wird das Display automatisch inaktiv

Buttons

 Buttons sperren/ entsperren: Button 5 Sekunden gedrückt halten

Button	Navigation	Werte einstellen
	Innerhalb der Menüstruktur nach oben	Wert erhöhen
\bigtriangledown	Innerhalb der Menüstruktur nach unten	Wert verringern
	Untermenü aufrufen	Bestätigen: neuen Wert speichern und Wertein- stellungen verlassen
>1 s drücken	Untermenü verlassen	Zurück: neuen Wert nicht speichern und Wert-

Sensor parametrieren

Für die Parametrierung des Sensors stehen Ihnen folgende Möglichkeiten zur Verfügung: Display am Sensor (siehe Menüstruktur oben)

einstellungen verlassen

- Control Input
- IO-Link Parameter

HINWEIS

Am Display kann nur eine beschränkte Auswahl der Parameter eingestellt werden. Nur über IO-Link sind alle Parameter zugänglich.

Einstellungen über Display

Nullpunkt teachen

Der Nullpunkt (ZP) ist der Referenzpunkt für die Messung (relative Messung).

ZP ist Basis für:

ausgegebene Messwerte.Grenzen des analogen Messfelds.

Voraehen:

- a) Platzieren Sie das Messobjekt auf den Nullpunkt (ZP) und navigieren Sie über das Display.
- b) Zero position □ Zero position □ Teach □
 ✓ Wert wird angezeigt, Nullpunkt gesetzt

Die digitalen Messwerte vor dem Nullpunkt (in Richtung Sensor) werden als negative Messwerte <0 und hinter dem Nullpunkt (ferner dem Sensor) als positive Messwerte >0 ausgegeben.

Verschieben Sie den Nullpunkt, ändern sich die Grenzen des analogen Messfelds. Parametrieren Sie deshalb das analoge Messfeld neu.

Analoges Messfeld einstellen

Verschieben Sie die untere Grenze P1 und die obere Grenze P2 des analogen Messfelds, können Sie die Auflösung des Analogausgangs anpassen. Durch die Eingrenzung des analogen Messfelds können Sie kleinere Distanzänderungen darstellen.

Vorgehen:

- a) Navigieren Sie über das Display.
 b) Analog output
 D Lower limit
- c) Stellen Sie den Wert P1 über △ ☑ ein
- d) Bestätigen Sie mit 🛛.
- ✓ Der Pfeil verschwindet, der Wert wird gesetzt.
- ✓ Die untere Grenze P1 ist gesetzt.
- e) Analog output 🛛 Upper limit 🗆
- f) Stellen Sie den Wert P2 über △ 🛛 ein
- g) Bestätigen Sie mit 💷
- ✓ Der Pfeil verschwindet, der Wert wird gesetzt.
 ✓ Die obere Grenze P2 ist gesetzt.

Schaltpunkt teachen

Definieren Sie über die Funktion Schaltpunkte die Messwerte (Switchpoint), bei denen der Schaltausgang aktiviert werden soll.

Vorgehen:

- ✓ Wert wird angezeigt, Schaltpunkt 1 gesetzt
- c) Gehen Sie analog für **Setpoint 2** vor.

Auf Werkseinstellungen zurücksetzen

Vorgehen:

- a) Navigieren Sie über das Display.
- b) General □ Reset Options □ Factory reset □ ✓ Display zeigt Startbildschirm an
- Auf Werkseinstellungen zurückgesetzt

Einstellungen über Control Input

Definitionen der Funktion des Control Input. Der Control Input (Pin 5) kann für folgende Zwecke verwendet werden:

Laser on/off

Trigger-Modus Beschreibung

- Free run/ Control Input LOW: Messung läuft, La-Interval ser ist ON
 - Control Input HIGH: Messung ist gestoppt, Laser ist OFF
- External Fallende Flanke: einzelne Messung wird trigger Die nächste Messung kann ausgelöst werden, sobald die vorherige Messung

beendet ist.

Zero position

Trigger-Modus Beschreibung

Free run/ Nullpunkt teachen: aktueller Messwert Interval

External In diesem trigger-Modus ist kein Nullpunkt trigger teachen möglich.

HINWEIS

Den Trigger-Modus können Sie ausschließlich über die Schnittstelle IO-Link anpassen.

Einstellungen über IO-Link

HINWEIS

Sobald Sie den Sensor über IO-Link verbinden, können Sie Daten über das Display nur lesen. Parametrieren von Daten über das Display ist dann nicht möglich. Um den Sensor über IO-Link einzurichten, laden Sie das IODD-File für den Sensor von einer der beiden folgenden Websites. über die Artikelnummer. herunter:

www.baumer.com

www.ioddfinder.io-link.com

Eine detaillierte Beschreibung der IO-Link Funktionen finden Sie in der Betriebsanleitung.

Werkseinstellungen

Bez.	IODD Bez.	Wert	
Min. Grenze des analogen Messbe- reichs	Analog Scaling Lower Limit	Sdc	
Max. Grenze des analogen Messbe- reichs	Analog Scaling Upper Limit	Sde	
Nullpunkt	Zero Position	0 mm	
Control Input	Control Input	Laser	On/Off

IO-Link Only

Wartung und Reinigung

Das Gehäuse ist während des Betriebs wartungsfrei. Abhängig von dem Installationsort reinigen Sie das Gehäuse regelmässig.

HINWEIS! Unsachgemässe Reinigung kann zu Geräteschäden führen!

- Verwenden Sie nur empfohlene Reinigungsmittel
- Verwenden Sie niemals scharfe Gegenstände zur Reinigung.

Weiterführende Informationen

Eine ausführliche Beschreibung der Funktionen und einstellbaren Parameter des Sensors finden Sie in der Betriebsanleitung.

OM60 – DER NEUE MASSSTAB SEINER KLASSE OM60-P0450.HH.YIFV

Artikelnr.: 11726794

- Automatische Anpassung der Belichtungszeit für präzise Messungen auf wechselnden Materialien
- Hohe Fremdlichtsicherheit für zuverlässige Messungen unabhängig von den Umgebungsbedingungen
- Punktstrahlform für eine punktgenaue Messung
- Display mit Live-Monitor

Allgemeine Daten

Funktion	Distanzmessung
Messbereich Mr	290 mm
Einstellung	IO-Link
	Display
	Extern
Betriebsanzeige	LED grün
Ausgangsanzeige	LED gelb
Wiederholgenauigkeit	5 µm
Linearitätsabweichung	± 0,086 % Mr
Linearität	± 250 μm
Strahlform	Punkt
Temperaturdrift	± 0.006 % Sde/K

Lichtquelle

Lichtquelle	Laserdiode rot, gepulst
Wellenlänge	660 nm
Laserklasse	1
Maximale Pulsleistung	0,6 mW
Pulsdauer	0,02 0,9 ms
Pulsperiode	0,5 2 ms

Elektrische Daten

Antwortverzögerung	1 ms	
Messfrequenz	2000 Hz	
Betriebsspannungsbereich +Vs	18 30 VDC	
Stromaufnahme max. (ohne Last)	100 mA	
Ausgangsschaltung	Analog und digital	
Ausgangssignal	4 20 mA / 2 10 mA	
Lastwiderstand	< 300 Ω	
Kurzschlussfest	Ja	

Kommunikationsschnittstelle

Schnittstelle	IO-Link V1.1.3
IO-Link Porttyp	Class A
Baudrate	230,4 kBaud (COM 3)
Zykluszeit	≥ 1 ms
Prozessdatenlänge	48 Bit
Prozessdatenstruktur	Smart Sensor Profile - DMS PDI48.INT32_INT8
Prozessdatenstruktur	Smart Sensor Profile - DMS PDI48.INT32_INT8 Bit 0 = SSC1
Prozessdatenstruktur	Smart Sensor Profile - DMS PDI48.INT32_INT8 Bit 0 = SSC1 Bit 1 = SSC2
Prozessdatenstruktur	Smart Sensor Profile - DMS PDI48.INT32_INT8 Bit 0 = SSC1 Bit 1 = SSC2 Bit 2 = Qualität
Prozessdatenstruktur	Smart Sensor Profile - DMS PDI48.INT32_INT8 Bit 0 = SSC1 Bit 1 = SSC2 Bit 2 = Qualität Bit 3 = Alarm

Mechanische Daten

Breite / Durchmesser	27,2 mm
Höhe / Länge	66 mm
Tiefe	57 mm
Bauform	Quaderförmig, frontale Optik
Gehäusematerial	Kunststoff (PBT-ASA)
Frontscheibe	РММА
Anschlussart	Kabelstecker M12 5-Pol, L=300 mm
Gewicht	130 g

weitere OM60-Varianten ->